Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.045
Filtrar
1.
Cureus ; 16(2): e55287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558750

RESUMO

This case report describes a 67-year-old woman who developed an extensive, slow-growing lesion occupying the whole of the palate in 10 years. Considering clinical and radiographic features, calcifying neoplasms were considered. Correlating microscopic features with clinical features, the lesion was diagnosed as peripheral ossifying fibroma, which seldom presents as an extensive lesion on the palate amongst the elderly age group. This case report will highlight clinicians and pathologists about a rare presentation of a commonly encountered lesion with a comprehensive view of the differential diagnosis of other comparable lesions.

2.
Oral Dis ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566464

RESUMO

OBJECTIVE: Inflammatory stimuli compromise the differentiation potency of human periodontal ligament cells (hPDLCs). Macrophage-derived exosomes (M-Exo) play a role in several aspects of cellular activity. This study investigated how M-Exo contributes to the osteo-/cementogenic differentiation of hPDLCs under inflammation and the mechanism involved. METHODS: M-Exo was identified by transmission electron microscopy, western blotting (WB), and dynamic light scattering. The internalization of M-Exo by hPDLCs was observed. After M-Exo treatment, the osteo-/cementogenic markers were detected by RT-qPCR and WB, and alkaline phosphatase (ALP) activity by ALP staining. Tumor necrosis factor alpha (TNF-ɑ) was applied to simulate inflammation. The rescue effect of M-Exo on TNF-ɑ-suppressed differentiation was validated. The p38 MAPK pathway activity was tested and a specific inhibitor was applied to explore the mechanism. RESULTS: M-Exo was successfully isolated, identified and internalized by hPDLCs. M-Exo enhanced the osteo-/cementogenic differentiation of hPDLCs, as indicated by upregulated osteo-/cementogenic markers and elevated ALP activity. Moreover, TNF-ɑ inhibited the differentiation capabilities of hPDLCs, on which M-Exo showed a rescue effect. M-Exo activated the p38 MAPK pathway and SB203580 attenuated its promotion effect. CONCLUSION: This study showed that M-Exo ameliorated the TNF-ɑ-suppressed osteo-/cementogenic differentiation of hPDLCs partly through the p38 MAPK pathway.

3.
Int Dent J ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582718

RESUMO

Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.

4.
BMC Pediatr ; 24(1): 248, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600453

RESUMO

AIM: Age estimation plays a critical role in personal identification, especially when determining compliance with the age of consent for adolescents. The age of consent refers to the minimum age at which an individual is legally considered capable of providing informed consent for sexual activities. The purpose of this study is to determine whether adolescents meet the age of 14 or 18 by using dental development combined with machine learning. METHODS: This study combines dental assessment and machine learning techniques to predict whether adolescents have reached the consent age of 14 or 18. Factors such as the staging of the third molar, the third molar index, and the visibility of the periodontal ligament of the second molar are evaluated. RESULTS: Differences in performance metrics indicate that the posterior probabilities achieved by machine learning exceed 93% for the age of 14 and slightly lower for the age of 18. CONCLUSION: This study provides valuable insights for forensic identification for adolescents in personal identification, emphasizing the potential to improve the accuracy of age determination within this population by combining traditional methods with machine learning. It underscores the importance of protecting and respecting the dignity of all individuals involved.


Assuntos
Determinação da Idade pelos Dentes , Humanos , Adolescente , Determinação da Idade pelos Dentes/métodos , Radiografia Panorâmica , Dente Serotino , Ligamento Periodontal , Aprendizado de Máquina
5.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 172-180, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597077

RESUMO

OBJECTIVES: The effect of TiO2 nanotube morphology on the differentiation potency of senescent periodontal ligament stem cells was investigated. METHODS: Two types of titanium sheets with TiO2 nanotube morphology (20V-NT and 70V-NT) were prepared via anodic oxidation at 20 and 70 V separately, and their surface morphology was observed. Young periodontal ligament stem cells were cultivated in an osteogenic induction medium, and the most effective surface morphology in promoting osteogenic differentiation was selected. RO3306 and Nutlin-3a were used to induce the aging of young periodontal ligament stem cells, and senescent periodontal ligament stem cells were obtained. The osteogenic differentiation of senescent periodontal ligament stem cells was induced, and the effect of surface morphology on osteogenic differentiation was observed. RESULTS: Nanotube morphology was achieved on the surfaces of titanium sheets through anodic oxidation, and the diameters of the nanotubes increased with voltage. A significant difference in the effect of nanotube morphology was found among nanotubes with different diameters in the young periodontal ligament stem cells. The surface nanotube morphology of 20V-NT had a more significant effect that promoted osteogenic differentiation. Compared with a smooth titanium sheet, the surface nanotube morphology of 20V-NT increased the number of alkaline phosphatase-positive senescent periodontal ligament stem cells and promoted calcium deposition and the expression of osteogenic marker genes Runt-related transcription factor 2, osteopontin, and osteocalcin. CONCLUSIONS: A special nanotube morphology enhances the differentiation ability of senescent periodontal ligament stem cells, provides an effective method for periodontal regeneration, and further improves the performance of implants.


Assuntos
Implantes Dentários , Osteogênese , Ligamento Periodontal/metabolismo , Titânio/metabolismo , Titânio/farmacologia , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia
6.
Clin Oral Investig ; 28(5): 250, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613726

RESUMO

OBJECTIVES: Occlusal sensitivity (OS)-the ability to detect fine objects between opposing teeth-mainly relies on the activity of mechanoreceptors located in the periodontal ligament. We tested whether somatosensory amplification (SSA)-the tendency to perceive normal somatic sensations as being intense, noxious, and disturbing, which plays a critical role in hypervigilance-affects OS. MATERIALS AND METHODS: We measured OS in 66 adults divided into three groups based on their SSA scores (LowSSA, Intermediate - IntSSA, HighSSA) by asking them to bite on aluminum foils (8 to 72 µm thick) and a sham foil, and report whether they felt each foil. We performed 20 trials for each thickness and sham condition (each participant was tested 120 times), and compared the frequency of correct answers (%correct) among groups after adjusting for participants' trait anxiety, depression, self-reported oral behaviors, and masseter cross-sectional area. RESULTS: %correct was affected by the interaction Foil Thickness-by-SSA (p = 0.007). When tested with the 8 µm foil, the HighSSA group had a lower %correct than the IntSSA (contrast estimate [95% CI]: -14.2 [-25.8 - -2.6]; p = 0.012) and the LowSSA groups (-19.1 [-31.5 - -6.6]; p = 0.001). Similarly, with the 24 µm foil, the HighSSA group had a lower %correct compared to the IntSSA (-12.4 [-24.8-0.1]; p = 0.048) and the LowSSA groups (-10.8 [-22.5-0.8]; p = 0.073). CONCLUSION: Individuals with high SSA present with an aberrant occlusal sensitivity. CLINICAL RELEVANCE: Our findings provide novel insights into the relationship between occlusal perception and psychological factors, which may influence an individual's ability to adapt to dental work.


Assuntos
Alumínio , Ansiedade , Adulto , Humanos , Estudos de Casos e Controles , Músculo Masseter , Ligamento Periodontal
7.
J Periodontal Res ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616305

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease mediated by dysbiosis of the oral microflora, resulting in the destruction of periodontal tissue. Increasing evidence suggested that mesenchymal stem cell (MSCs) and exosomes derived from MSCs play a critical role in periodontal tissue regeneration. However, whether stem cells from exfoliated deciduous teeth (SHED)-secreted exosomes can improve the therapeutic potential of periodontitis is largely unknown. OBJECTIVE: Here, we aim to evaluate the effect of SHED-exosomes on inflammation, apoptosis and osteogenic differentiation in periodontitis. METHODS: The periodontitis cell model was constructed by stimulating periodontal ligament stem cells (PDLSCs) with lipopolysaccharide (LPS), and the periodontitis rats were established by ligation. RESULTS: First, we isolated exosomes from the SHED, and we figured out that exosomes secreted by SHED were enriched in miR-92a-3p and the exosomes enhanced proliferation and osteogenic differentiation and reduced apoptosis and inflammatory responses in PDLSCs. In addition, we found that SHED-exosomes alleviated inflammatory effect and elevated the expression of osteogenic-related genes in periodontitis rat model. Moreover, miR-92a-3p targeted downstream Krüppel-Like Transcription Factor 4 (KLF4) and regulated the PI3K/AKT pathway. Finally, our data indicated that upregulation of KLF4 or activation of PI3K/AKT by 740Y-P counteracted the inhibitory effect of SHED-exosomes on periodontitis progression. CONCLUSION: Taken together, our finding revealed that exosomal miR-92a-3p derived from SHED contributed to the alleviation of periodontitis development and progression through inactivating the KLF4/PI3K/AKT signaling pathway, which may provide a potential target for the treatment of periodontitis.

8.
Mater Today Bio ; 26: 101050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654935

RESUMO

Periodontal ligament (PDL) cells play a crucial role in maintaining periodontal integrity and function by providing cell sources for ligament regeneration. While biophysical stimulation is known to regulate cell behaviors and functions, its impact on epigenetics of PDL cells has not yet been elucidated. Here, we aimed to investigate the cytoskeletal changes, epigenetic modifications, and lineage commitment of PDL cells following the application of stretch stimuli to PDL. PDL cells were subjected to stretching (0.1 Hz, 10 %). Subsequently, changes in focal adhesion, tubulin, and histone modification were observed. The survival ability in inflammatory conditions was also evaluated. Furthermore, using a rat hypo-occlusion model, we verified whether these phenomena are observed in vivo. Stretched PDL cells showed maximal histone 3 acetylation (H3Ace) at 2 h, aligning perpendicularly to the stretch direction. RNA sequencing revealed stretching altered gene sets related to mechanotransduction, histone modification, reactive oxygen species (ROS) metabolism, and differentiation. We further found that anchorage, cell elongation, and actin/microtubule acetylation were highly upregulated with mechanosensitive chromatin remodelers such as H3Ace and histone H3 trimethyl lysine 9 (H3K9me3) adopting euchromatin status. Inhibitor studies showed mechanotransduction-mediated chromatin modification alters PDL cells behaviors. Stretched PDL cells displayed enhanced survival against bacterial toxin (C12-HSL) or ROS (H2O2) attack. Furthermore, cyclic stretch priming enhanced the osteoclast and osteoblast differentiation potential of PDL cells, as evidenced by upregulation of lineage-specific genes. In vivo, PDL cells from normally loaded teeth displayed an elongated morphology and higher levels of H3Ace compared to PDL cells with hypo-occlusion, where mechanical stimulus is removed. Overall, these data strongly link external physical forces to subsequent mechanotransduction and epigenetic changes, impacting gene expression and multiple cellular behaviors, providing important implications in cell biology and tissue regeneration.

9.
Regen Ther ; 27: 268-278, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38617443

RESUMO

Introduction: Orthodontic tooth movement (OTM) involves complex interactions between mechanical forces and periodontal tissue adaptation, mainly mediated by periodontal ligament cells, including periodontal ligament stem cells (PDLSCs), osteoblasts, and osteoclasts. Dopamine (DA), a neurotransmitter known for its critical role in bone metabolism, is investigated in this study for its potential to enhance osteogenic differentiation in PDLSCs, which are pivotal in OTM. This study examined the potential of DA to facilitate OTM by binding to DA receptors (D1R and D2R) and activating the ERK1/2 signaling pathway. We propose that DA's interaction with these receptors on PDLSCs could enhance osteogenic differentiation, thereby accelerating bone remodeling and reducing the duration of orthodontic treatments, which offering a novel approach to improve clinical outcomes in orthodontic care. Methods: This study utilized a rat OTM model, micro-CT, histological analyses, and in vitro assays to investigate dopamine's effect on osteogenesis. PDLSCs were cultured and treated with DA, and cytotoxicity, osteogenic differentiation, gene and protein expression assessed. Results: Dopamine administration significantly increased trabecular bone density and osteogenic marker expression in an OTM rat model. In vitro, DA at 10 nM optimally promoted human PDLSCs osteogenesis without affecting proliferation. Blocking DA receptors or inhibiting the ERK1/2 pathway attenuated these effects, underscoring the importance of dopaminergic signaling in tension-induced osteogenesis during OTM. Conclusion: Taken together, our study reveals that local dopamine administration at a concentration of 10 nM not only enhances tension-induced osteogenesis in vivo but also significantly promotes osteogenic differentiation of PDLSCs in vitro through D1 and D2 receptor-mediated ERK1/2 signaling pathway activation.

10.
J Dent Sci ; 19(2): 1135-1142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618083

RESUMO

Background/purpose: Periodontitis is an inflammatory condition of the tooth-supporting structures triggered by the host's immune response towards the bacterial deposits around the teeth. It is well acknowledged that pro-inflammatory interleukin (IL)-6, IL-8, MCP-1 as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, are the key modulators in the activation of this response. Erbium-doped yttrium-aluminium-garnet (Er:YAG) laser, a solid-state crystal laser have been commonly used in the treatment of periodontal diseases. However, little is understood about the molecular mechanism of the Er:YAG laser, especially in targeting the host immune response brought on by periodontal pathogens. Hence, the current study focused on the protective effects of Er:YAG laser on periodontitis in-vitro in terms of pro-inflammatory cytokines, chemokines and NLRP3 inflammasome expressions. Materials and methods: Human periodontal ligament fibroblast (PDLFs) were first stimulated with lipopolysaccharides (LPS) from P. gingivalis (Pg-LPS) to simulate periodontitis. Cells were then irradiated with Er:YAG laser of ascending energy densities (3.6-6.3 J/cm2), followed by cell proliferation and wound healing assay. Next, the effects of Er:YAG laser on the expressions of IL-6, IL-8, MCP-1, NLRP3, and cleaved GSDMD were examined. Results: Pg-LPS was found to reduce cell's proliferation rate and wound healing ability in PDLFs and these were rescued by Er:YAG laser irradiation. In addition, LPS stimuli resulted in a marked upregulation in the secretion of IL-6, IL-8 and MCP-1 as well as the mRNA and protein expression of NLRP3 and cleaved-GSDMD protein whereas Er:YAG laser suppressed the elicited phenomena. Conclusion: To our knowledge, this is the first study to look into the laser's implication on the NLRP3 inflammasome in periodontitis models. Our study reveals a crucial role of Er:YAG laser in ameliorating periodontitis in-vitro through the modulation of IL-6, IL-8, MCP-1 and the NLRP3 inflammasome and highlights that the control of the NLRP3 inflammasome may become a potential approach for periodontitis.

11.
Bio Protoc ; 14(7): e4970, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618176

RESUMO

Periodontal disease is characterized by the destruction of the hard and soft tissues comprising the periodontium. This destruction translates to a degradation of the extracellular matrices (ECM), mediated by bacterial proteases, host-derived matrix metalloproteinases (MMPs), and other proteases released by host tissues and immune cells. Bacterial pathogens interact with host tissue, triggering adverse cellular functions, including a heightened immune response, tissue destruction, and tissue migration. The oral spirochete Treponema denticola is highly associated with periodontal disease. Dentilisin, a T. denticola outer membrane protein complex, contributes to the chronic activation of pro-MMP-2 in periodontal ligament (PDL) cells and triggers increased expression levels of activators and effectors of active MMP-2 in PDL cells. Despite these advances, no mechanism for dentilisin-induced MMP-2 activation or PDL cytopathic behaviors leading to disease is known. Here, we describe a method for purification of large amounts of the dentilisin protease complex from T. denticola and demonstrate its ability to activate MMP-2, a key regulator of periodontal tissue homeostasis. The T. denticola dentilisin and MMP-2 activation model presented here may provide new insights into the dentilisin protein and identify potential therapeutic targets for further research. Key features • This protocol builds upon a method described by Cunningham et al. [1] for selective release of Treponema outer membrane proteins. • We adapted the protocol for the purification of biologically active, detergent-stable outer membrane protein complexes from large batch cultures of T. denticola. • The protocol involves large-scale preparative electrophoresis using a Model 491 Prep Cell. • We then use gelatin zymography to demonstrate the activity of the purified dentilisin complex by its ability to activate matrix metalloproteinase 2 (MMP-2).

12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 533-540, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597445

RESUMO

OBJECTIVE: To evaluate the efficacy of a modified sericin hydrogel scaffold loaded with dexamethasone (SMH-CD/DEX) scaffold for promoting bone defect healing by stimulating anti-inflammatory macrophage polarization. METHODS: The light-curable SMH-CD/DEX scaffold was prepared using dexamethasone-loaded NH2-ß-cyclodextrin (NH2-ß-CD) and sericin hydrogel and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), biocompatibility assessment and drug release test. THP-1 macrophages incubated with the scaffold were examined for protein expressions of iNOS and Arg-1, mRNA expressions of IL-6, Il-10, Arg-1 and iNOS, and surface markers CD86 and CD206 using Western blotting, RT-qPCR, and flow cytometry. In a co-culture system of human periodontal ligament stem cells (HPDLSCs) and THP-1 macrophages, the osteogenic ability of the stem cells incubated with the scaffold was evaluated by detecting protein expressions of COL1A1 and Runx2 and expressions of ALP, Runx2, OCN and BMP2 mRNA, ALP staining, and alizarin red staining. In a rat model of mandibular bone defect, the osteogenic effect of the scaffold was assessed by observing bone regeneration using micro-CT and histopathological staining. RESULTS: In THP-1 macrophages, incubation with SMH-CD/DEX scaffold significantly enhanced protein expressions of Arg-1 and mRNA expressions of IL-10 and Arg-1 and lowered iNOS protein expression and IL-6 and iNOS mRNA expressions. In the co-culture system, SMH-CD/DEX effectively increased the protein expressions of COL1A1 and Runx2 and mRNA expressions of ALP and BMP2 in HPDLSCs and promoted their osteogenic differentiation. In the rat models, implantation of SMH-CD/DEX scaffold significantly promoted bone repair and bone regeneration in the bone defect. CONCLUSION: The SMH-CD/DEX scaffold capable of sustained dexamethasone release promotes osteogenic differentiation of stem cells and bone defect repair in rats by regulating M2 polarization.


Assuntos
Osteogênese , Sericinas , Ratos , Humanos , Animais , Interleucina-10 , Subunidade alfa 1 de Fator de Ligação ao Core , Sericinas/farmacologia , Hidrogéis/farmacologia , Interleucina-6/farmacologia , Macrófagos , Dexametasona/farmacologia , RNA Mensageiro , Diferenciação Celular , Células Cultivadas
13.
J World Fed Orthod ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508997

RESUMO

BACKGROUND: Rapid distraction of the periodontal ligament is an effective method to shorten the orthodontic treatment time. The objectives of the present study were to assess the effects of an HYCON device (Adenta GmbH, Germany) on the rate of en masse retraction of the anterior teeth, duration of retraction, anchorage loss, root resorption, and soft tissue changes. METHODS: This study was conducted on 60 female patients aged >18 years, divided randomly into two equal groups: Group 1 comprised 30 patients with HYCON, and group 2 comprised 30 patients with nickel-titanium closed coil springs. Skeletal, dental, and soft tissue changes were evaluated on pre- and post-retraction lateral cephalograms, and the rates of anterior tooth movement and anchorage loss were assessed monthly on the dental casts of the patients. Root resorption was assessed using intraoral periapical radiograph. Student's t test was used for the analysis of parametric data, and the Mann-Whitney U test was used for nonparametric data. RESULTS: HYCON significantly shortened the retraction duration by 3 months. The rate of anterior teeth retraction was two times faster in group 1, compared with group 2. There was a significant difference in the anchorage loss between the groups in only first 2 months of treatment. Group 2 showed significantly more root resorption and soft tissue changes than group 1 (P < 0.05). CONCLUSIONS: HYCON is an effective device for significantly shortening the duration of retraction with anchorage loss of 2 to 2.5 mm. However, careful monitoring for possible root resorption should be performed.

14.
Discov Med ; 36(182): 518-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531792

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease resulting from bacterial plaque infection. While the involvement of activating transcription factor 1 (ATF1) has been extensively explored in various human diseases, its specific role in periodontitis remains unclear. This study aims to elucidate the expression and biological function of ATF1 in the context of periodontitis. METHODS: Primary human periodontal ligament cells (hPDLCs) were procured from clinical samples and subsequently characterized. Following treatment with P. gingivalis lipopolysaccharide (LPS, 10 µg/mL), hPDLCs underwent transfection with either ATF1 vector or siRNA. The expression levels of ATF1 in LPS-treated hPDLCs or transfected cells were evaluated through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Inflammatory factors, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1ß), were quantified using Enzyme-linked Immunosorbent Assay (ELISA). The assessment of osteogenic proteins, such as runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG), as well as noncanonical nuclear factor-kappaB (NF-κB) pathway-related proteins (p65, p-p65, IkBα, p-IkBα), was conducted using western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry assays were employed to detect cell viability. RESULTS: LPS induced an inflammatory response and hindered the osteogenic differentiation of hPDLCs (p < 0.05, p < 0.01). Furthermore, ATF1 silencing enhanced cell proliferation and suppressed apoptosis in LPS-stimulated hPDLCs (p < 0.05, p < 0.01). ATF1 silencing not only restrained the inflammatory response but also promoted the osteogenic differentiation of LPS-stimulated hPDLCs (p < 0.05, p < 0.01). Importantly, ATF1 silencing effectively blocked the LPS-induced activation of the NF-κB signaling pathway (p < 0.05, p < 0.01, p < 0.001). CONCLUSIONS: ATF1 emerges as a promising treatment option, inhibiting the osteogenic differentiation of hPDLCs and mitigating the inflammatory response by preventing the phosphorylation of the NF-κB signaling pathway.


Assuntos
NF-kappa B , Periodontite , Humanos , Fator 1 Ativador da Transcrição/metabolismo , Células Cultivadas , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Osteogênese , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Periodontite/patologia
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 37-45, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475949

RESUMO

OBJECTIVES: This study aimed to investigate the effects of sitagliptin on the proliferation, apoptosis, inflammation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in lipopolysaccharide (LPS)-induced inflammatory microenvironment and its molecular mechanism. METHODS: hPDLSCs were cultured in vitro and treated with different concentrations of sitagliptin to detect cell viability and subsequently determine the experimental concentration of sitagliptin. An hPDLSCs inflammation model was established after 24 h of stimulation with 1 µg/mL LPS and divided into blank, control, low-concentration sitagliptin (0.5 µmol/L), medium-concentration sitagliptin (1 µmol/L), and high-concentration sitagliptin (2 µmol/L), high-concentrationsitagliptin+stromal cell derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) pathway inhibitor (AMD3100) (2 µmol/L+10 µg/mL) groups. A cell-counting kit-8 was used to detect the proliferation activity of hPDLSCs after 24, 48, and 72 h culture. The apoptosis of hPDLSCs cultured for 72 h was detected by flow cytometry. After inducing osteogenic differentiation for 21 days, alizarin red staining was used to detect the osteogenic differentiation ability of hPDLSCs. The alkaline phosphatase (ALP) activity in hPDLSCs was determined using a kit. The levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6] in the supernatant of hPDLSCs culture were detected by enzyme-linked immunosorbent assay. The mRNA expressions of osteogenic differentiation genes [Runt-associated transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN)], SDF-1 and CXCR4 in hPDLSCs were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Western blot analysis was used to determine SDF-1 and CXCR4 protein expression in hPDLSCs. RESULTS: Compared with the blank group, the proliferative activity, number of mineralized nodules, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in the control group significantly decreased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 significantly increased (P<0.05). Compared with the control group, the proliferative activity, number of mineralized nodule, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in low-, medium-, and high-concentration sitagliptin groups increased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 decreased (P<0.05). AMD3100 partially reversed the effect of high-concentration sitagliptin on LPS-induced hPDLSCs (P<0.05). CONCLUSIONS: Sitagliptin may promote the proliferation and osteogenic differentiation of hPDLSCs in LPS-induced inflammatory microenvironment by activating the SDF-1/CXCR4 signaling pathway. Furthermore, it inhibited the apoptosis and inflammatory response of hPDLSCs.


Assuntos
Benzilaminas , Ciclamos , Lipopolissacarídeos , Ligamento Periodontal , Humanos , Ligamento Periodontal/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Osteogênese , Transdução de Sinais , Inflamação/metabolismo , Células-Tronco , RNA Mensageiro/metabolismo , Apoptose , Proliferação de Células , Células Estromais/metabolismo , Diferenciação Celular , Células Cultivadas
16.
Regen Ther ; 25: 138-146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486822

RESUMO

Introduction: Extracellular matrix (ECM) synthesis and deposition in fibroblasts, and vascularization via endothelial cells are essential for successful tissue regeneration. Fibroblasts can produce both ECM, physical support for maintaining homeostasis, and bioactive molecules, such as growth factors and cytokines. Endothelial cells can secrete growth factors and form vascular networks that enable the supply of nutrients and oxygen and remove metabolic products. Methods: In this study, we focused on combining Human Periodontal Ligament Fibroblasts (HPLF) and Human Umbilical Vein Endothelial Cells (HUVEC) for tissue regeneration in clinical applications. Results: The fibroblastic and angiogenic phenotypes were promoted in co-culture with HPLF and HUVEC at a ratio of 1:1 compared to HPLF or HUVEC mono-culture. The gene expression of ECM components and angiogenesis-related factors was also enhanced by HPLF/HUVEC co-culture. Despite an apparent increase in the expression of angiogenic factors, the levels of secreted growth factors decreased under co-culture conditions. These data suggest that ECM constructed by HPLF and HUVEC would act as a storage site for growth factors, which can later be released. Our results showed that cell-to-cell interactions between HPLF and HUVEC enhanced collagen synthesis and endothelial network formation, leading to the creation of highly vascularized constructs for periodontal tissue regeneration. Conclusion: Successful periodontal tissue regeneration requires microenvironmental reconstruction and vascularization, which can be achieved using a co-culture system. In the present study, we found that fibroblastic and angiogenic phenotypes were enhanced by the co-culture of HPLF and HUVEC. The optimal culture conditions (1:1) could potentially accelerate tissue engineering, including ECM synthesis and EC tube formation, and these approaches can improve therapeutic efficacy after transplantation.

17.
Life (Basel) ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541613

RESUMO

Segmental bone defects that are caused by trauma, infection, tumor resection, or osteoporotic fractures present significant surgical treatment challenges. Host bone autograft is considered the gold standard for restoring function but comes with the cost of harvest site comorbidity. Allograft bone is a secondary option but has its own limitations in the incorporation with the host bone as well as its cost. Therefore, developing new bone tissue engineering strategies to treat bone defects is critically needed. In the past three decades, the use of stem cells that are delivered with different scaffolds or growth factors for bone tissue engineering has made tremendous progress. Many varieties of stem cells have been isolated from different tissues for use in bone tissue engineering. This review summarizes the progress in using different postnatal stem cells, including bone marrow mesenchymal stem cells, muscle-derived stem cells, adipose-derived stem cells, dental pulp stem cells/periodontal ligament stem cells, periosteum stem cells, umbilical cord-derived stem cells, peripheral blood stem cells, urine-derived stem cells, stem cells from apical papilla, and induced pluripotent stem cells, for bone tissue engineering and repair. This review also summarizes the progress using exosomes or extracellular vesicles that are delivered with various scaffolds for bone repair. The advantages and disadvantages of each type of stem cell are also discussed and explained in detail. It is hoped that in the future, these preclinical results will translate into new regenerative therapies for bone defect repair.

18.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542181

RESUMO

Periodontal defects' localization affects wound healing and bone remodeling, with faster healing in the upper jaw compared to the lower jaw. While differences in blood supply, innervation, and odontogenesis contribute, cell-intrinsic variances may exist. Few studies explored cell signaling in periodontal ligament stem cells (PDLSC), overlooking mandible-maxilla disparitiesUsing kinomics technology, we investigated molecular variances in PDLSC. Characterization involved stem cell surface markers, proliferation, and differentiation capacities. Kinase activity was analyzed via multiplex kinase profiling, mapping differential activity in known gene regulatory networks. Upstream kinase analysis identified stronger EphA receptor expression in the mandible, potentially inhibiting osteogenic differentiation. The PI3K-Akt pathway showed higher activity in lower-jaw PDLSC. PDLSC from the upper jaw exhibit superior proliferation and differentiation capabilities. Differential activation of gene regulatory pathways in upper vs. lower-jaw PDLSC suggests implications for regenerative therapies.


Assuntos
Osteogênese , Ligamento Periodontal , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular/fisiologia , Mandíbula , Células Cultivadas , Proliferação de Células
19.
Clin Oral Investig ; 28(4): 219, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492123

RESUMO

OBJECTIVES: This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS: We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1. RESULTS: Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation. CONCLUSIONS: Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation. CLINICAL RELEVANCE: These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.


Assuntos
MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Osteogênese/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ligamento Periodontal , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células-Tronco , Células Cultivadas
20.
Arch Oral Biol ; 162: 105956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522213

RESUMO

OBJECTIVE: The periodontal ligament is a crucial part of the periodontium, and its regeneration is challenging. This study compares the effect of simultaneous and sequential use of FGF-2 and TGF-ß1 with FGF-2 and TGF-ß3 on the periodontal ligament stem cells (PDLSCs) teno/ligamentogenic differentiation. DESIGN: This study comprises ten different groups. A control group with only PDLSCs; FGF-2 group containing PDLSCs with a medium culture supplemented with FGF-2 (50 ng/mL). In other experimental groups, different concentrations (5 ng/mL or 10 ng/mL) of TGF-ß1&-ß3 simultaneously or sequentially were combined with FGF-2 on the cultured PDLSCs. TGF-ß was added to the medium after day 3 in the sequential groups. Methyl Thiazolyl Tetrazolium (MTT) assay on days 3, 5, and 7 and Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis after day 7 were conducted to investigate PLAP1, SCX, and COL3A1, RUNX2 genes. All experiments were conducted in a triplicate. The One-way and Two-way ANOVA with Tukey post hoc were utilized to analyze the results of the MTT and RT-qPCR tests, respectively. A p-value less than 0.05 is considered significant. RESULTS: The proliferation of cells on days 3, 5, and 7 was not significantly different among different experimental groups (P > 0.05). A higher expression of the PLAP1, SCX, and COL3A1 have been seen in groups with sequential use of growth factors; among these groups, the group using 5 ng/mL of TGF-ß3 led other groups with the most amount of significant upregulation in PLAP1(17.69 ± 1.11 fold; P < 0.0001), SCX (5.71 ± 0.38 fold; P < 0.0001), and COL1A3 (6.35 ± 0.39 fold; P < 0.0001) expression, compared to the control group. The expression of the RUNX2 decreased in all groups compared to the control group; this reduction was more in groups with sequential use of growth factors. CONCLUSION: The sequential use of growth factors can be more effective than simultaneous use in teno/ligamentogenic differentiation of PDLSCs. Moreover, treatment with 5 ng/mL TGF-ß3 after FGF-2 was more effective than TGF-ß1.


Assuntos
Ligamento Periodontal , Fator de Crescimento Transformador beta3 , Fator de Crescimento Transformador beta3/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular , Células-Tronco , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...